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Abstract

\

,::‘ This paper presents a geometric analysis of bifurcations leading to

“f"l‘ ) chaos ‘fggofamilton‘ia?:;’sgvs.tgms with two degrees of freedom of the form

KX X d ‘x =y, y‘ = -@V(x).‘ Two bifurcation parameters are considered. One is
the ecnergy level and the other is an angle, & between two homoclinic
orbits. Though global non-linearities arc.gecﬂessary, the results are
obtained by local aDnalysis of the flow near fhc origin where 1t is

.o~ D-se

':'::t: assumed that 'D?V(0) = I, the 2 x 2 identity matrix. For a fixed

_.:‘: energy level it is shown that as @/ decreases through 90‘? the two

homoclinic orbits bifurcate into two homoclinic orbits, a pcrifcl)‘dfi‘c orbit,

."ll ) and connecting orbits. These_: orbits can then be used to define a

ey . F Superscy. o7 4

4‘:’,: compact region in R Now treating the energy as a parameter value the

trajectory of orbits passing through this compact region can be described

BA using symbolic dynamics. In this case it is shown that a single periodic

Z;::.'. orbit bifurcates into three periodic orbits whose stable and unstable
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:, 1. Introduction
‘trSv
o

‘ In Hamiltonian systems, the existence of transverse intersections
L between the stable and unstable manifolds of distinct periodic orbits gives
Hal rise to regions in which solutions to the system exhibit complex or
‘iihv

)

pathological behavior. For Hamiltonian systems arising from a
o Hamiltonian function, H: R* =~ R Rod [7]}, and Churchill and Rod [2], [3]
:Z and [4] established methods for showing the existence of such transverse
o tt]

¢ intersections. Essential to their methods is the fact that along solutions
vl of a Hamiltonian system the Hamiltonian function (i.c., the total energy)
f‘ is constant. Thus, by considering a fixed energy level, they need only
h:f:

consider a 3-dimensional system. In the examples considered in [3), [4],
el and [7], the analysis is almost exclusively limited to the energy levels at
8
}‘;i, which the complex behavior is exhibited.
LER
B ’ In this paper, we treat the energy level as a bifurcation parameter,
:é and present an example in which a single periodic orbit bifurcates into
By
:;; three periodic orbits whose stable and unstable sets intersect transversely.
¥y

k) R .

& Our example differs from theirs in two other ways. First, we do not
i?:,i‘ assume the existence of any global symmetries (compare with [3], {4], and
Q’,;:
’(«; [7). For the sake of clarity, we introduce a local symmetry at the
en’é
ey 8
e origin. However, this symmetry is not necessary and we sketch how the
;,{:11 results can be established for the more general nonsymmetric case. Second,
W
a;;‘.; the Hamiltonian functions considered in [3], [4), {[7). and here are all of
i‘?‘g

- the form H(x,y) = &y,y> + V(x) where xy ¢ R. In the former
A papers, the origin is either a local minimum of V or a degenerate
60"
R
‘;:"., saddle point (i.e. there exist directions in which V increases and other
B
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directions in which V decreases). In our example, the origin is taken

to be a non-degenerate local maxima of V, ie.

D2V(0) =

As will be seen, the set of pathological bounded orbits lies arbitrarily
close to the origin.

The energy level, H = 0, is the value at which the bifurcation takes
place. It is assumed that on this energy level two orbits, homoclinic to
the origin, appear. Furthermore, as the energy, H, is decreased, these
homoclinic orbits become disjoint periodic orbits. Section 3 will show that
if the homoclinic orbits approach the origin at a certain angle, then there
exists another distinct periodic orbit. These three periodic orbits are the
"basic" periodic orbits, whose stable and unstable sets are shown to
intersect transversely. If we take the "angle" between the homoclinic
orbits to be a bifurcation parameter (we are now letting the Hamiltonian
function vary), then we have another bifurcation occuring. In this case,
two orbits homoclinic to the origin, with their "nested" periodic orbits,
bifurcate into a periodic orbit and a region exhibiting the
above-mentioned pathological behavior.

Because we assume that the origin is a non-degenerate critical point

of V (and hence H), the solutions to Hamilton’s equations

X =Y

(1.1)

,%':x:.:: yi = -DiV(X)

'»z," oo . e - ¢ R
- AN A
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can be approximated near the origin by solutions to the linear problem
defined by Hp(x,y) = d<y,y> — Ka}x? + alx?). This is done in Section
2. In fact, in order to present the concepts clearly, we only consider the
linear problem in Section 2.1. To understand how the solutions behave
near the origin we restrict our attention to the set {z | H(z) = 0) and
replace the origin by a torus. This new space is called the critical
manifold. On this critical manifold we define a new flow, compatible
with that defined by (1.1), and use this new flow to analyze the behavior
of solutions passing near the origin.

Whereas the results of Section 2 are local in nature, Section 3 begins
the analysis of the global sructure of the solutions. As such we need to
introduce the global non-linearities of V. These are given as a series of
assumptions concerning the qualitative behavior of the flow generated by
the Hamiltonian system, rather than explicit restrictions on the potential
functions. There are reasons for choosing this indirect approach. First,
the hypotheses of the theorems are qualitative in nature. Unfortunately,
the analysis required to check that a particular potential function
satisfies such hypotheses is often long, sometimes difficult, and usually ad
hoc. For a discussion on the types of functions which give rise to this
qualitative behavior, or on the types of arguments which can be
employed to demonstrate such behavior, the reader is referred to [1), [2],
{3], [4]), and [7]. Second, in order to obtain pathologies in the manner
described in this paper, one needs rather mild assumptions. In fact,
most of the assumptions we make can be changed without significantly

altering the results. We chose the conditions on V so as to emphasize

v,
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the underlying causes of the results rather than to obtain the most
general or most easily applicable results.

Also, in Section 3, we restrict our attention, for the most part, to

2
V(x,.x,) = = -g-(x: +x3) + Vo(x),

where Vo(x) is O(Ixli?) at the origin. We use the results of Section 2
to prove the existence of an isolated periodic orbit which persists for all
energy levels near the bifurcation point H = 0. Changing to the case
where the angle between the homoclinic points is used as a bifurcation
parameter, we prove (Theorem 3.20) that a periodic orbit bifurcates out
of two homoclinic orbits when the angle is 90°. Finally, we comment
briefly on how similar results could be obtained for the case V(x x,) =
Lalx? + alxd) + V (x).

The results of Sections 4 and 5 depend heavily on the work of Rod
[7] and Churchill and Rod [2]. Chapter 4 shows that the hypotheses of
their theorems are satisfied. Unfortunately, developing the language in
which to state the hypotheses is a lengthy process. Thus, rather than
repeat a substantial portion of their papers [2], [3], and [7], it is assumed
that the reader is familiar with their work, and hence, only the results
which differ substantially from theirs are proved.

In Chapter 5, using symbolic dynamics, we classify the set of orbits
which intersect a compact region defined by the "basic” periodic and
homoclinic orbits near the origin. Our presentation of these results is very
curt and the reader is referred to [2), [6] or [7] for a more complete

interpretation of results of this type.
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2. The Critical Manifold

2.1. The Lincar System

For the sake of clarity of exposition, we begin by considering a
linear Hamiltonian system. For our purposes, the most general potential
function we can choose is of the form, —(ajx} + a2x2). However, since
we are only concerned with the qualitative behavior, we can scale out

one of the coefficients to get,
1
V(x) = V(x,x,) = = 5 (x}+a%d, aszL Q.1
This gives rise to the Hamiltonian function, H: R? x R? = R where
1
H(x,y) = 5 <y,y> + V(x). (2.2)

If we let z = (x,y) € R x R?, then Hamilton’s equations applied to (2.2)

give the linear system of differential equations,

z = Ax, "= d/dt (2.3)
where ‘
00 1 0 |
A=110 0 o
0 a> 0 o

By the chain rule we have that H is constant on solutions of (2.3).
Let M = {(z ¢ R* | H(z) = 0). One easily checks that the origin, O, is

D% the only critical point of (2.3) and that O ¢ M. In order to understand
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the behavior of solutions of (2.3) which lie in M and pass near O, we
will replace the critical point by a critical manifold and define a flow
on our new space which corresponds to the old flow on this manifold.
This section details the construction of the critical manifold for (2.3). As
will be seen in the next section, this construction carries over to the class
of non-linear Hamiltonian systems which interest us.

Since (2.3) is a linear system it is possible to rewrite the differential
equations in polar form. Let S3%(r) = (z ¢ R* | Izl = 1} and let
{ € S3(1). Given z € RY"\{O} there exists a unique r > 0 and a unique

{ such that z = r{. The polar form differential equations are given in

the following lemma.
d .
Lemma 2.1: (a) ; <[, 0> = 2<{,{>=0

(b) t = 1<Af,[> (2.4)

(c) § = Al ~ <A§,L>8 (2.5)

Proof: (a) This follows from <{,{> = 1.
(b) Differentiating z = r{ gives z = 1:; + rAf}. Taking the inner
product with { and using (a) gives (b).

(c) Substitute (b) into (c). O

Understanding the flow given by (2.4) and (2.5) turns out to be of
great importance. Of particular interest is the fact that (2.5) is
independent of r. This implies that S3r) is an invariant set for (2.5),

for all r » 0, which is not surprising since (2.5) is nothing more than

X A LAl A ,_ Kot h"»'\'q
) LA R O L O RN




the projection of the flow of (2.2) onto the unit sphere centered at the
origin. Since S3(r) is an invariant set of (2.5) it makes sense to ask how the
" solutions restricted to §%r) N M behave. Let P: M - R® be given by

: b P(x,y) = x. Let T(r) = S%r) "M and define K(r) = {x | Zx: +( + a)x§

!E @"n = l’}.
A Proposition 2.2: T(r) is homeomorphic to a torus, i.e., S! x S!,

Proof: K(r) defines an ellipse since r > 0, and hence is homeomorphic

to a circle, ie, SI. Given x € K(r) one can check that

1
Pii(x) = {(x,y) | <y,y> = S+ (a? - 1)xd).

This implies that for all x ¢ K(r), P;’(x) is homeomorphic to S!. We
can think of T(r) as a fiber bundle with base K(r) ~ S! and fiber
P;{(x) ~ S.L Since y corresponds to the velocity vector it is clear that

::::;‘ T(r) is orientable. Thus T(r) is a torus. a

‘._(g‘. The cigenvalues of A are $1 and #a. The corresponding
:'::’ eigenvector spaces are generated by (x4,0,x,,0), (x,,0,7x,,0), (0,x,,0,ax,),
—- and (0,x,,0,max,). The stable manifold to the origin, W* is spanned by
-;'," (x,,0,7x,,0) and (0,x,,0,ax,). The unstable manifold, WY is spanned
aal by (x,0x,0) and (0,x,0ax,). Thus both W" and W*' are two

dimensional manifolds contained in M. Let 1

Wiy SYr) = W4 NS¥r) and S%r) = W* N S¥r).

W DRSNS
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The following is obvious.

Lemma 2.3: (a) S¥(r) CT(r) and S%r) CT(r) forall r 3 0.

(b) S™r) and S%r) are homeomorphic to S

Since (2.5) is independent of r, the description of the flow on T(r)
will be the same regardless of what value of r 3 0 is chosen. Hence,
without loss of generality, one can, for purposes of simplifying the
calculations let r = 1. To simplify the notation let T = T(1), S? = S3(1),

S* = S¥%(1), and S* = S*(1).

Lemma 2.4: Solutions to (2.5) have the following properties:

(a) If § is an eigenvector of A then ( = 0.

(b) If L €T and § £ S"USY, then { #0.

(c) Solutions on T\(S" U 8%} are heteroclinic orbits from fixed points of
S* to fixed points of SY.

If a > 1, then the fixed points on T are the eigenvectors of A which
lie on T. Furthermore, the flow on S* consists of the four critical points
$2%1,0-1,00  and  +(1+a)¥0,1,0-a)  plus  heteroclinic orbits  from
(1+a9)%0,1,0ma) 10 £27%1,0-1,0) and from  (1+a)%0,-1.02) 10
t2'%(1,0,—1,0). The flow on S* consists of the critical points tZ'K(l,O.l,O)
and t(l+a’)’”(0,l,0,a) plus heteroclinic orbits from 2'”(1,0.1,0) to
+(1+a%740,1,0,0) and from 27%-1,0-1,0) 10 +(1+a%)%0,1,0,0).

If a =1 then all the elements of S*USY are fixed points.

; Ry : A | - - x SR O IR S W
n DO 0 (] O J ; h L% N \E:ﬁ-t&".p \t&t’\t-m:- T -
.?&‘Jl.«..k‘.,l'g!l“?\.n,l't,‘i i\ ,)l‘g!l . ’v.‘i.n. AT I .l.!...l 3% (o b "& . ¥ .:.h',',.h.i !S:!.-}l"
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Proof: All the results are evident if one recalls that (2.5) is the projection of

the linecar flow (2.3) onto the unit sphere. g

Since (2.5) is derived from a linear system, one might hope to be able to
find a simple exact description of the heteroclinic orbits on T. If one
assumes that a = 1 then this is the case. For a > 1 we shall not attempt

to do so except for a few special orbits.

Notation 2.5: From now on ¢ will denote a critical point in S* and
n a critical point in SY. For a > I, the possible values of ¢ and n
are given in Lemma 24. If a =1 then { = (3,;:85-¢,,—%,) and

n = (N,N,,0,,0,).

Definition 2.6: For fixed ¢ and n define a path in S® by

w(g,n) = w: [0,1] =S8

where

(1)t + ¢cn
ll(1—<)t + enll

w(g,n;c) =

For fixed ¢ and n, define TI(c) = ||(l—c)t + cnll'! and let W(c) =

l"l(c)w(c). Finally, let w(c) = (w1(c),w,(c),ws(c),w‘(c)).

Proposition 2.7: w({,n): [0,1] =T if and only if n = #(%,~%,, — 1t at,).

Proof: One needs to find the conditions on & and n such that for
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all ¢ ¢ [0,1], H(w(c)) = 0. By (2.2) this is the same as requiring that
wie) + wie) — wi(c) —awi(c) = 0. (2.6)

At this point there is a multitude of cases which need to be checked. If
a > 1 then the results follow by simple substitution. We shall
demonstrate the case in which a = 1.

Substitution of Notation 2.5 and Definition 2.6 into equation (2.6)

plus some simple calculations yield

E,n, = —t,n, @2.7)
or

202 _ y2,2
g2n? = g2n2 2.8)
Since &,n ¢ S3, one has that

282+ 83 = 1 = 2(n + n)). (2.9)

Using (2.9) to solve for {f and n; and substituting into (2.8) gives

n, = £, A similar argument gives 7, = {,. The desired result now

follows from (2.7) and (2.8). (0]

Definition 2.8: Given ¢ define n_ = ({;~%;, = 1;,aty) and n_ =

(—%58, Lt.maty).

Proposition 2.9: The curves w(g,n +;c) and w(i,n;c), for c e (0,1),

represent heteroclinic orbits on T\(S* U S%. If a = 1 these are all

the heteroclinic orbits described in Lemma 2.4.
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Proof: Again we are faced with a multitude of cases. We shall give the
proof for a =1 and n,. The other cases follow in a similar manner. Let
V be the vector space spanned by ¢ and n,. w(c) is a curve which lies
in VNnS% If for any fixed ¢, { = w(c) and { € V, then w(c) will

represent a heteroclinic orbit. Equation (2.5) gives

{ = Aw(c) — <Aw(c),w(c)>w(c)

= TAW(c) — I3<AW(c),W(c)>W(c).

What needs to be shown is that there exist real numbers d and e such

that dit + en, = {. Simple but tedious calculations give that:

AW = (¢, = (I=0)8y, ~(I-e)E, — ey, (10)E, + i, (1<)%, — k),
<AW,W> = 2¢ ~ 1,
d = -T(1=c)[1 + (2c-1)r%},

and

e=Tc[l~QcNIY
The details of checking that d§ + en, ={ issatisfied isleft to the reader. O
Consider (2.4) restricted to T. Notice that z = r{ ¢ S* implies f < 0
and z ¢ S" implies f > 0. We want to describe the set of points on s3(r)

at which r = 0. For r > 0 this means solving <A{,[> = 0. One easily

checks that if z lies in the vector space spanned by

S Y LA EE A P EEND Fo T

S
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: (1, vZ@Q+a) % 1, —vZa(+ah ¥, (1, vIa(+ah) ¥ -1, va(1+ah )
or, by

(-1, vZa(1+ad) % 1, ~vTa(+a) ), (-1, vIa(+a?)® 1, vJag+ad)¥).

then <Az,z> = 0, ie,, if z = r{ then r = 0. On the other hand, since
V.<Az,z> # 0 for all z # 0, these planes are the only points for which

r = 0. These two planes intersect T(r) in two disjoint circles. Figure 1

T e e e e

describes the flow of (2.5) restricted to T(r) for a > 1. If a =1 then

r=0 at w(¢nc) if and only if ¢ = 1/2. If ¢ € [0,1/2), then r < 0

K\

%

g and if c € (1/2,1] then r > 0.

B

’:.

INSERT FIGURE 1.

R

)

a4

o

¢

v . So far, the results of this section have been independent of r, the

only restriction being that r > 0. Now consider the case r = 0. In
M, r = 0 corresponds to the origin which, according to (2.3), is a rest

point. While (2.5) is still applicable when r = 0, it is of limited use when

P

applied to a single point. Thus, to fully exploit (2.5) it is necessary to

construct a critical manifold, CM, to replace M. In particular the origin

S e e

-

in M, O, will be replaced by a torus, CT, on which (2.5) is defined in a
non-trivial manner. The details are what follows.

Let A LB denote the disjoint union of two sets A and B,

Definition 2.10: Let X = R"\(O} 4 S. Define h: X = (v ¢ R*| vl » 1} by

[

|
¥
]

+

n A 1 C CORIO 0N LR ERLREN
ﬁ"“‘:."*f“"'?‘ 4 ‘-i&.!f'. n.:"t'.'t .‘v..»'»'a.JO ;‘J"u!q ls'tl.t' .‘el tfn a‘. ] } !
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(r+1)§ if z ¢ RZ\(O)
h(z) = h(r{) =
' 4 if zeS%
,n:o The topology of X is such that h is a homeomorphism,

The following system of coordinates will be used to describe the
. elements of X. If z ¢ X then z ¢ R\(O) or z ¢ S% 1In the first
';,E case, onc writes z = r{ = (r,{). In the latter case, one writes z = (0,{).
Using this notation, one can check that (2.4) and (2.5) arc well defined
y on X. Furthermore, (2.4) and (2.5) give rise to a continuous flow on
:\ X.
: Since M\{O)} ¢ RY(O) there is an obvious embedding of M\{O)
intc X given by 2z = r{ |— (r,{). In addition, under this embedding
M\(O} is not closed in X. Define CM to be the closure of M\(O)} in

X. Let

CT = CM\(M\(O)).
Proposition 2.11: CT is homeomorphic to a torus.
i Proof: Notice that CT c 8% € X, hence z ¢ CT implies that
o z=(0) Let { ¢ T then (r,{) ¢ M\(O) for all r > 0. Thus
£ lim (r,6) = (0.%) ¢ CT.

B If { € SS\T then (0,f) is not a limit point of M\{(O} in X, thus
= 0,0) £ CT. Therefore CT and T are homeomorphic which by

,,i Proposition 2.2 implies that CT is homeomorphic to a torus. a
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The flow on CM is determined by (2.4) and (2.5). Notice that for
(r,§), r > 0, one has the same flow as that determined by (2.3). However,
on CT the flow arises from (2.4) and (2.5) for r = 0. Since elements
of CT are of the form (0,§), CT is an invariant set of the flow. The
flow is continuous on CM since (2.5) is independent of r and (2.4) is
continuous in r for all r 3 0. This flow, which is a mapping

CM x R - CM, will be denoted by
((l',;),t) l-. (f,‘)'t = (T't,§°‘)

where r-t is determined by (2.4) and ({-t) is determined by (2.5).

Definition 2.12: For fixed r,> 0 define:
B(rg) = {(r,{)) e CM | 1 €1}
BYro) = {(rp8) € CM | i € 0)

BY(r,) = ((ry,) € CM | £ 2 0).

Remarks 2.13: (a) Tr(r) = B%r) U BY(x).
(b) It follows from Proposition 2.2, Lemmas 2.3 and 2.4, and (2.5) that

B*r) and BYr) arec homeomorphic to annuli.

(¢) B%r) n BY%r) is homeomorphic to two disjoint circles (see
comments following Proposition 2.9) which will be denoted by C,(r) and
C,(r).
i (d) In the language of Conley (5], B(r), r > 0 is an isolating
neighborhood for the maximal invariant set CT. The exit set and

entrance set for B(r) are given by BYr) and B%r), respectively.
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Proposition 2.14:  Given  (r,{) € BXr)\Sr) there exists a unique
t* = t*%(r,{) 3 0 such that (r,{)-t* ¢ BY(r)\S%(r) and (r,{)-[0,1*] C B(r). -
Define ¢ BYr)\SXr) = BY(r)\S“(r) by @(r,{) = (r,{)-t*(r,{), then ¢ s

\ a homeomorphism.

Proof: Because the flow defined on CM corresponds to the flow of the
{ linear equations (2.3) for all clements except those on CT, it is clear
that if (r,{)-R C B(r) then (r,{) ¢ T(0). Also, from the lincarity of

(2.3), one has that if (r,{)-t € B(r) for all t 3 0 then (r,{) € S%r).

P

e

Likewise, if (r,{)-t € B(r) for all t < 0 then (r,{) € SYr). Thus,

K one has the existence of t* if (r,{) ¢ B*r)\S%r), and one has that

' @(B’(r)\S*(r)) = BY(r)\S¥(r).
E
: That ¢ is a homeomorphism follows from the uniqueness of solutions i
. of ordinary differential equations. 8]
"
§
[}
ﬁ Corollary 2.15: ¢ is the identity on C(r) U Cy(r) = B*(r) N B%(r).
)
:.‘ In what follows, it will be useful to keep in mind that M C CM.
)
v Thus, if (r,{) ¢ CM and r > 0 then
Py(r,0) = (r{,,r§,) ¢ R
) Also, in most cases, when one deals with the sets B(r), B%r), and B%r)
B, it is assumed that r > 0 and fixed. Hence, for convenience sake, let
[]
3 B = B(r), B* = BYr), and B* = B¥r).
»
i
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e
b
{ Remarks 2.16: Recall that the purpose of the critical manifold is to
v describe the behavior of solutions of (2.3) passing near the origin. This
@ will be done by describing the map ¢  using Figures 2, 3, and 5, and
+I
“g} the fact that the following conventions have been adopted.
Y]
3 (a) The projection under P, of a radial line in Figures 2, 3 and 5
" is always a single point x. In the language of the proof of Proposition
by
3 2.2, the radial lines are subsets of the fibers.
§‘ (b) The projection under P, of a concentric circle is K(r).
" () Let L, CR%i=12 be rays emanating from the origin with slope m
)
o
:a" and -m, m > 0. Let L, lic in the first quadrant, and L, lic in the
WM
". fourth quadrant, and let ¥ denote the angle between the line segments. Let
" A =P{L) for i =12 Define A=A NB" and A} = A N B" Then
2 .
;: A\S* consists of two line segments. Denote these line segments by A, or
Ny
':2 ) A}, depending on whether they intersect C, or C,, respectively. Similar
" definitions can be made for A;‘J, j = 1,2. Finally, define d;’ = Cj N A‘I'J,
)
) [ - s U u s o L
$‘ d} = C;N A, el =C,NA} ande}=C,NA,
',r (d) Let (x,y) =d; where y = (ny,,-y,)
. (¢) Let J represent the convex region in R? bounded by L,
i
? i = 1,2. The shaded regions in Figure 2 consist of those elements of B
p 0
]
‘:: which project under P, into J.
B INSERT FIGURE 2.
N
Ry INSERT FIGURE 3.
o
"N
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":"3'01 For the moment we restrict our attention to the case a = 1. A typical
e clement of S%r) must be of the form (r,t). Furthermore, 'l_n.g: (r,) t =
(0,§) ¢ S%0) c CT. By Proposition 2.9 and Definition 2.8, w(g,n,.c)
:.i;:!: describes the two heteroclinic orbits on CT connecting (0,8) € S%0) to
‘%" ©,n,) e SY(0). In addition, !i.tf]..(r’"t) = (0,n,). This allows us to define

the following paths in CM.

th ‘ Definition 2.17: Given any (r,t) € S* let 74(%): [0,3] = B(r) denote the two
$
paths defined by

Nl 7:(8)(s) = (r,§) - s/1-s for s € [0,1)
e 7. = (0,0)

7:06) = Ow(Eny; s-1) for s € (1,2)
2 74(0)2) = (0,1,

7:(R)(s) = (r,ny) - (3-5)/(2-3) for s € (2,3]

Ll Definition 2.18: Let 4 be a metric on CM. Let 7 [0,3] = CM. Let
(r,{) ¢ CM. One says that the orbit of (r,{) lies in an e-tube about 7y over

the interval [tot,] if forall te [tot,]

st Jnf (@D 1) < e

:‘i‘ Proposition 2.19: If a = 1 then the images of A=.j for 1= 12 j=1,2

N under ¢ are as given in Figure 3. (Notice the importance of Y).
)

164 Proof: Corollary 2.15 fixed the clements of C;, and C, under .
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Let (r,{) ¢ B*\S®, then by Proposition 2.14 there exists a unique
t* = t*(r,{) such that (r,{)-[0,t*] € B. Let, (r,{) € S%r). Recall the
construction of 7y,({). Each "picce” of 7, is made up of a solution to
(2.4) and (2.5). Thus, by continuity one can choose (r,{) ¢ B®\S* such
that the orbit of (r,{) lies in an e-tube of either 7, (&) or 7Y(X) over
the interval [0,t*]. Remarks 2.16 (d) and (¢) force dj =
(r,§,,mg{,,mg,,-{,) and hence Px(A:,z“) ¢J forall t> 0.

Finally, notice that <Pl(r.'7+),P1(r,£)> = 0 and Pl(r,n+) = =P (r,n).
Thus the image of A;J under ¢ must be as shown. The arguments for

cp(l\i"j) are similar. 0

A technically incorrect but intuitively illuminating restatement of

Proposition 2.19 is as follows. If one considers the path of a solution to (2.3)
in x-space, then those orbits which lic on the stable manifold to the origin,
leave the origin on the unstable manifold in a direction perpendicular to the
direction of entry. In application, this means that orbits on the surface M
which pass close to the origin change direction by slightly less than 90°. See

Figure 4.

INSERT FIGURE 4.

We now consider briefly the case a > 1. Let

1
*gl = 1[0, ) 09 = ] ’

vl +a? vl +a?
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}}‘f{ and #n? = #(1/vZ, 0, 1/vZ, 0). Let (r}) € S%r). If § # £{! then
by lim (r,n)-t = (0,£8%).  Assume lim (r,{)-t = (0.4"). Then we can define

e 74(8): [0,3] = B(r) as follows:

S 74(8)(s) = (r,§) - s/1-s for s ¢ [0,1)
74(0)(1) = (0,8%)

7:(8)(s) = (0, w(2,n}; s-1)) for s € (1,2)
o 7:(18)(2) = (0,n})

7:(8)(s) = (r,n}) - 3-s/(2-%) for s € (2,3).

If }i_r.n“ (r,{)-t = (0,—%2) then there is a corresponding definition for 7 +(8).
The question of how to define 7t(t{‘) is more delicate. Because the
S system is linear, we have an exact solution for (2.3), namely, z(t) = c‘“zo.

3 Using this, we conclude that 7, should satisfy
k]
74(81)(2) = (0,n2) = 75(~t})(2).

115¢ (This involves checking that (r,§) ¢ CM close to (r,t!) implies that
(r,{)-t*(r,{) is not close to (r,n‘*)). A proof similar to that for Proposition

20N 2.19 says that Figure 5 demonstrates how ¢ acts on B*\S"
& INSERT FIGURE 5.

Wiy 22. The Noanlincar System

The results of Section 2.1 are easily extendable to the class of non-linear

x -
-
-

Hamiltonian functions, H € C3(R® x R3, R), given by
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1
H(x,y) = 5 <Yy + V(x) (2.10)
where

1
V(x) = — 3 (a}x? + a2x?) + vV (x) (2.11)

and V(x) = of ”x"z) at the origin. As before, we note that the qualitative
picture near the origin will not change if we set a, = 1. The differential
equations of interest are given by Hamilton’s equation, i.e.,

X=Y

(2.12)
IV (x).

“« .
1}

As in the case of (2.3), the origin, O, is a fixed point for (2.12) and H
(i.e., (2.10)) is constant along solutions. Thus M = {(z | H(z) = 0} is
invariant under (2.12). As before we can embed M\(O} into X and
define CM to be the closure of M\{0} in X. Define CT =
CM\(M\(O}). The question is whether the flow on CT determined by (2.12)
is the same as that of (2.3). The following theorem answers it in the

affirmative.

Theorem 2.20: (Hartman-Grobman). Let z = f(z),z ¢ R and f(z)=0. If
Df(z) has no zero or purely imaginary eigenvalues then there is a
homeomorphism h defined on some neighborhood U of z in R locally
taking orbits of the nonlinear flow ¢, corresponding to z = {(z), to those of

the linear flow 'Pf(®)

corresponding to z = Df(z)z. The homeomorphism
preserves the sense of orbits and can also be chosen to preserve parametrization

by time.
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v:;p:: 3. Periodic Orbits

This section contains theorems concerning the existence of periodic
A orbits arising from the Hamiltonian systems of the form (2.12). It is
% worth emphasizing that these periodic orbits do not occur because of a

global symmetry but rather because of the local behavior described in

sl

ol

L
HERR ST

Section 2. For the sake of clarity in our exposition we shall assume
v _.l_ 2 2 A%
(x) = 3 (x] + x3) + V(x).

.‘|: This is a strong assumption as it introduces local symmetry. However, it
t is not crucial to the types of arguments used in the proofs that follow.
-Li Let E(h) = {x | V(x) = h), then E is called an equipotential set of
2;@ V.Let h- <0 <h*. h and h* will be lower and upper bounds
for h and need to be chosen sufficiently small for the following

= results to hold. We do not attempt to estimate what these values should

%
»q§ > be.
B

;
? Assumption 1:

.. (a) If h € (h0) then E(h) = EO(h) U ET(h) U EB(h) where EO(h),
. ET(h) and EB(h) are disconnected curves in R:. (See Figure 6.)
it If x = (x,,x,) € ET(h) then x,> 0, and if x € EB(h) then
*;::.'t X, < 0. Furthermore ET(h) and EB(h) bound the regions
{x | V(x) > h) away from the xl-axis. EO(h) is the boundary of a

[ region {x | V(h) > h) which contains the origin.

R
+ _hi,‘
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(b) If h=0 then E(h) is as in(a). However, EO(h) is the origin.
(c) If h ¢ (O,h*) then E(h) is as in (a). However, EO(h) is the empty

set.

INSERT FIGURE 6.

To simplify the notation, if h =0 let E = E(0), ET = ET(0), and
EB = EB(0). Let wu: [0,1])] - ET, v: [0,1] - EB be parametrizations of
portions of ET and EB respectively. (See Figure 7.)

As before, the origin in R!' is a critical point with 2-dimensional
stable and 2-dimensional unstable manifolds denoted by W* and WY
respectively. Let  P(h): {z | H(z) = h) = R, i =12, be given by
Pi(h)(x,y) =x and Py(h)(x,y) = y. Again, to simplify the notation we
write P, = P(0) It is easily checked that, if H(x,y) = h and
x ¢ E(h) then y = 0. Thus, no confusion should arise if one considers
E(h) C R or E(h) C {(x,y) | H(x,y) = h). In particular, u(s) and v(s)
will be used interchangeably to denote clements of R? and clements of

M

Definition 3.1: Given z € R* such that H(z) = h, define

Mz) = inf(t > 0 | P,(h)(z-t) lies on the x,-axis).

Assumption 2:

(a) w(0) and v(0) lie on the stable manifold of the origin.

L - ' ' 4 - - o« vV ” T4 o Ly o« LA £ S S B B ) 3
-y b Sty o L R A e A A A L A R AR A
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:,’,q (b) Mu(s)) and XMv(s)) exist for all s ¢ (0,1].
g

(c) Pl(u(s) - Mu(s)) = Py(v(s) - Mv(s))) forall s e (0,1]. (See Figure 7.)
',f :v, ‘ INSERT FIGURE 7.

Let P! X - [-1,1] x [~1,1] for i = 1,2 where PJ}(rQ) = ({,,0,)
e and P;(r,C) = (;3,;4). By assumption 2(a), u(0) and v(0) are clements
‘«ff-j of W. Thus u(0) and v(0) are clements of M. By the conventions

of Section 2

S limu(0) - t = (0,%(u)) ¢ CT
“hogh t=o )
R (3.2)
. lim v(0) - t = (0.}(v)) € CT.

Definition 3.2: Let &, 0° ¢ & € 180°, be the angle defined by

s cos 0 o FNR) _PHR(V)

;; IPgcecunlt — lIPteconll

Assumption 3: 0° < & < 90°,

Assumption 4: I1f (xl(t),x,(t)) = P (u(0)-t) then xl(t) >0 and
x,(t) > 0 for all t e [0,®). [If (x,(t)xy(1)) = P,(v(0)-t) then x,(t) >0
oy and x4(t) < 0 for all t € [0,®)

;: Definition 3.3: Let os) ¢ [-n0] and B(s) ¢ [0,n) for s € (0,1] be

) . y i - L NI W N
A T A e LR & DD 2 DO DA APHTEAT N Y A W W) e 8
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defined by

<P,(u(s) - Mu(s))),(1,0)>
P, (u(s) - Mu»l

cos(«fs)) =

, cos(B(s)) = Falv(): MV(M(1,00>
IXOBRION

Geometrically, ofs) and B(s) represent the angles through which the orbits

originating at u(s) and v(s), respectively, cross the x,-axis for the first time.

PPN

Definition 3.4: Y¥(s) = B(s) — os).

Assumption 5: Y(1) < 1.

Theorem 3.5: Given assumptions 1-5, there exists at least one periodic orbit

on the energy surface {z | H(z) = 0).

The proof of this theorem is straightforward once one deals with the

following two technicalities. First, at present Y is only defined for

s € (0,1]. One needs to extend the definitions of « and B in such a

! way that they are continuous functions on the closed interval [0,1]. This
in turn will mean that ¥ is a continuous function on [0,1]. Second,

one needs to know the value of ¥0). As will be shown, Assumption 3

forces ¥(0) > n. Assume these problems have been dealt with.

Proof: Since Y is continuous on [0,1], ¥(0) > n, and Y¥(1) < 7, there

exists an s* ¢ (0,1) such that ¥(s*) = n. This in turn implies that the

ks
H
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.‘:f{, orbit passing through u(s*) crosses the x,-axis in exactly the opposite
‘Z direction from the orbit passing through v(s*). Since V(u(s*)) = 0 =
::":' V(v(s*)), the velocity at these points is zero. Thus, the same orbit passes
:::u:: through u(s®*) and v(s*). Invoking the reversibility of Hamiltonian
t:*\e systems, onc¢ has that the same orbit passes through u(s*) and v(s*) and
hence that this orbit is periodic. O

%‘ The critical manifold can be used to define o0) and B0) in
~: such a way that « and B are continuous functions in [0,1]. For the
;‘E::E moment, consider only the function « As was mentioned before, ofs)
::'::3' represents the angle at which the orbit originating at u(s) crosses the
‘:‘ x,-axis for the first time. By (3.2) 1i_g|¢ u(0)-t = (0,(u)) ¢ CT. Thus we
é have the two curves 7, [0,3)] = CM defined in Section 2 such that
3:': 7:(0) = u(0), 7,(1) = ¥(u) and 7,(2) = ny(u)
o ]
:éé:c Proposition 3.6: For s sufficiently small, the orbit of wu(s) lies in an
;’E::i €-tube about 7y, over the interval [0,t*).
W
o
i::. Proof: By continuity of the flow, given any € > 0, there exists t* > 0,
{a':,‘ such that for s sufficiently small the orbit wu(s) lies in an e-tube
v
':. about 7, or 7. over the interval [0,t*]. Assume the latter, ie., u(s)
‘: is close to 7. For all s ¢ (0,1] one has that P:(u(s)-x(u(s))) = (xl,O)
: where x; > 0. Hence one must be able to solve P;(w({(u).n_(u);c) - ‘
r (x4,0) where x, > 0. We shall show that this is not possible.
0

.
X |
A
4
X
e
s
3
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Let {(u) = (p,mp,p, mp) where p > 0 and m > 0. That t(u)
must be of this form follows from Assumption 4 and Notation 2.5. This
in turn  implies n (u) = (-mp,p,~mp,p). Thus, in order for
PH(w(E(u),n (u)c) = (x,,0), it must be the case that (I—<)mp + cp = 0

thus ¢ = m/m-1. But c¢ ¢ (0,1) hence m < 0. Contradiction. o

A straightforward calculation gives:

Proposition 3.7: If ¢t(u) = (p,mp,—p,—mp) where p > 0 and m > 0

and if P;(w(t(u),n+(u);c)) = (x,,0) where x;, >0 then ¢ = m/m + 1.

Let t(v) = (q,1nq,—q,nq) where q>0 and n> 0 Let
7:[0,3] = CM such that 7.0) = v(0), Y(1) = g(v) and

7.(2) = (nq,q,nq,q).

Proposition 3.8: For s sufficiently small, the orbit of v(s) lies in an
e-tube  about 7. over the interval [0,t*]. Furthermore, if

P:(w(t(v),n_(v);c)) = (x,,0), x, > 0 then c = n/(n+l).

The proof of Proposition 3.8 is similar to that of Propositions 3.6 and {

3.7. Direct calculation gives

11 |
PH(W({(u),n, (u); m/m+1)) = AT (m* - 1, 2m) |
. LI S S
PH(w(R(v),n(v); n/n+1)) Z1+n? (n® = 1, —2n).
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aE Definition 3.9: o«0) ¢ [-n,0] and B(0) € [O,n] are given by

2 _
COS(JO))-—PH- (1,0) = m !

' m? + 1
K lIpgwll

Piw n
o cos(B(0)) = —— . (1,0) = :
‘ lIp3w n®+ 1

RN Using this definition one has that « and B are continwous on [0,]]

and hence, that ¥ is continuous on [O0,1].
i Proposition 3.10: ¥(0) < n.
Proof: Let

) _ _PXw(k(u),n,(u); m/m+1))
“ IPS(w(&(u).n, (u); m/m+1))

M\ and

W ¢ o —P2WQREAN(V); n/n+l))

" "P;(W( tv),n_(v); n/n+1)ll .

I Then I = 1/(m3+1) (m?*-1,-2m) and I* = 1/(n®+1) (n3-1,2n).  Since
mmn > 0 it is clear that I lies in quadrants III and IV of the plane,
:;:: and I* lies in quadrants I and II of the plane. If it can be shown
:", that I* lies to the left of -1 then clearly ¥0) > n  Let

. (a,b) = -1 — I*. Showing that ¥ lies to the left of -1 is equivalent to

G showing that a > 0.
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a = (1-m?)/(1+m?) + (1-n?)/(1+n?)

= 2(1-m?n?)/(m3+1)(n3+1).

but Assumption 3 implies that mn <1 and hence a > 0. 0

Let us for the moment consider the case a > 1 in (2.12), and how
it differs from what we have just done for a = 1. The x,-axis has
been singled out as a reference line in Assumptions 1, 2, and 4. When
a = 1 this is not a restriction since V is locally symmetric about the
origin. If a > 1 then the results one obtains will depend upon the
reference line chosen. Assumption 2(a) works for a = | since all
elements of S* are critical points. If a > 1 then the results will
change depending on whether u{0)-t converges to +l1/v2(1,0,-1,0) or
+1/v1+a%0,1,0,-a). Finally, we were able to give a sharp estimate for
Assumption 3 (and hence Theorem 3.5) because we knew how the orbits
u(s) converged to 7,(u(s)) as s = 0. If a > 1 then the limit of the
crossing angles will be sensitive to m, n, and a. Therefore, while one
can perform the same type of analysis for a > 1, the arguments will

have to be more delicate or the resulting theorems less precise.

Definition 3.11: Let M(n) = (z | H(z) = h). Let u(h): [0,]1] = ET(h) and
v(h): [0,1] - EB(h) be parametrizations of portions of ET(h) and
EB(h) respectively.

The results obtained up to this point have been proven only on the
invariant surface M. This is due to the fact that any orbit which lies

in M), where h # 0, is bounded away from the origin in R*
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j:jo’r Therefore, one cannot expect that the flow on S(0) would provide a
R reasonable approximation to the orbits on  M(h). However, having

found results for M(0), slightly stronger conditions on V as well as
R the fact that V is continuous, should allow one to conclude that similar

results hold for M(h), as long as h is chosen sufficiently close to 0.

iy Assumption 6:
W (a) u and v are continuous on [h~,h*] x [0,1].
(b) For all s € (0,1], Mu(h,s)) and \(v(h,)) exist.

i (c) Pyu(h,s) - Mu(h,s))) = Py(v(h,s)) - Mv(h,s)).

Definition 3.12: ofh,s) € [-n,0] and B(h,s) € [0,n] are defined on

‘ h’,h+ x (0,1 b
:,:% [h-h*] x (0,1] by
Y

cos(edh,s)) = <P,(u(h,s) - Mu(h,s))),(1,0)>
% IP(uth.9) Auin I

:E cos(B(hs)) = T2rhS)- 20 ).(1,0)>
1

W IPy(v(n,s) - avens)

et ¥(h,s) = B(h,s) — a(h,s).
G‘ .‘
Notice that « B and hence Y, are continuous on [h",h*] x (0,1].

Theorem 3.13: Given Assumptions | - 6 and given |h* and |h7)
sufficiently small, there exists at least one periodic orbit, Ng(h), which lies

‘o;:. in M(h) and intersects ET(h) and EB(h).
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Proof: By Theorem 3.5 there exists an s* such that ¥0s* = 7.
Furthermore, by Proposition 3.10, ¥0,0) > n Thus, there exists an
§ € (0s*) such that ¥0,5) > n Since Y is continuous in a
neighborhood of (0,§), there exists 8, > 0 such that ¥(e§) > n for
€ € [-5,86,]. Similarly, by Assumption 5 ¥0,1) < m, hence there exists
8, > 0 such that ¥e,0) < for ¢ € [-5,,6,].

Let  h” = max(-8,—6,) and h* = min(6,6,). Then h € [h"h?]

implies that there exists s*(h) such that ¥(hs*th)) = n. (8]

From now on h* will be chosen as in Theorem 3.13.

Assumption 7: If S, <S; then lo(hs)) > leh,s,)| and IB(h,s,))l > 1B(h,s,)I.

Lemma 3.14: Assumptions 1-7 insure that Tyh) is unique for a given
h € [h-,h*]
Definition 3.15: Let si(h) € (0,5(h)] such that
u(sy(h)) -10,x(u(s(h)NT N u(E(h)) -[0,M(u(E(h)))] # ¢.
: : But, if s € (0,5,(h)) then
u(h,s) -[0,)(u(h,s))] N u(¥'(h))-[0,2(u(5(h)))] = ¢.

Let x(h,s) be the x,-coordinate of P,(u(h,s))-Mu(h,s)). Let
8,(h) € (0,5(h)] such that x(h,s,(h)) = x(hs*th) and if s € (0,5,(h))

then x(h,s) < x(h,s(h)).
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Lemma 3.16: x(h,so(h)) ¢ x(h,§(h)) and if s < So then x(h,s) < x(h,§(h)).

Proposition 3.17: s (h) = sl(h) = §(h).

Proof: In what follows, h is considered fixed and hence, to simplify
the notation, is suppressed. By definition so € §.  So assume s, < 5.
Furthermore assume x(s)) = x(§). By Assumption 7 Ja{sp))l > |5,
hence one must be in the situation of Figure 8. But by continuity of

the flow, there exists s" < s, such that

u(s") - [0,Mu(s"))] N u(¥) - [0,M(u(5))) # ¢.

Contradiction. Thus x(sg) < x(§). Now either u(¥)-[0,M(u(s))] intersects
u(§-[0,M(u(5))] topologically transversally or not ie. tangentially but not
topologically transversally. The former cannot happen since this forces

the existence of s" as above. But if the intersection is tangential then

u(sy) - [0,2(u(s))] = u(§)-[0,Mu(5))]

Therefore, So = g.

Thus either 0 < s, <s, = s* or Sy = S = s*. Assume the former

then x(s,) < x(s*). Contradiction. a

INSERT FIGURE 8.
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Corollary 3.18: Given Assumptions 1-7:
(a) u(h,s)-[0,Mu(h,s))] N u(h,S)-[0,Mu(h,S))] = ¢ if s #S.
(b) v(h,s)-[0,\v(h,s))] A v(h,S)-[0,Mv(h,S))]=¢ if s#S.

Proof: The machinery developed starting with Lemma 3.14 proves (a). The

proof for (b) is similar 0

Theorem 3.19:  Given Assumptions 1-7, for h € [h",ht], ns(h) is an

isolated periodic orbit in M(h).

Proof: First one constructs what will be the isolating set. Since s*(h) is
the unique solution to ¥(s,h) = n, it must be that for
0 <s, <s* <s, <1, one has ¥(h,s,(h)) > ® > Y(h,s,(h)).

The orbits  P,(u(si(h))-[0,M(u(s,(h)))] and P (v(s,(h))-[0,Mv(s;(h)))] for
i=12 can be used to define a compact region, denoted N ,(h),

contained in the set (x | V(x) € h). (See Figure 9) Let

PN, ,(h) = P{}(h)}(N ,(h)).

To see that PN ,(h) is an isolating neighborhood of TMy(h), one must
show that PN, (h) has no internal tangencies on PN ,(h). By
construction, the only tangential orbits are those which pass through
u(s;(h)) or wv(s(h)) for i = 12, However, the conditions on ofs,(h))

or B(s,(h)) force the orbits to leave in positive and negative time at the

points
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u(s;(h)) - Mu(s;(h))

and
v(s(h)) - M¥(s(h)).
Thus, there are no internal tangencies.
One now needs to show that l'ls(h) is the maximal invariant set in
PNn(h). Assume not, ie¢., assume that there exists some other orbit
n' # ngh) which is contained in PN ,(h) for all time. Given sj(h)

and s, (h) such that
s,(h) € sj(h) € s*(h) ¢ sg(h) € s,(h) ,

construct PNjk(h) C M(h) in the same manner that PN ,(h) was

constructed from s, and Let

1 Sy

PN(R) = 0 (PN(h) | 1" € PNy(h))

By Corollary 3.18, there exists sj.(h) and s,.«(h) such that PN(h) =
PNj.k.(h). Thus N' must have a point of tangency with PN(h). But

since N' # Mg, this means that N' must leave PN(h). Contradiction. O
INSERT FIGURE 9

Definition 3.20: A line (segment) L is a gradient line (segment) of V,

if for every x € L such that VV(x) # 0, one has that VV(x) is

parallel to L.
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:n: Assumption 8: There exist gradient line segments L, i =12 of V

)

by

v::: . which intersect the origin.  Furthermore L1 intersects u(h,0) and

" L, intersects v(h,0) for all h ¢ (h~,h*].

-&

)

)

The following proposition is obvious.

Lt

"

&l

9 Proposition 321: If h € [h-0] then there exist bounded orbits T(h)

ot

§ such that

y (a) P,(m(h)) CL, and intersects both EO(h) and ET(h).

-

3 (b) P,(M(h)) CL, and intersects both EO(h) and EB(h).

v Furthermore, if h < 0 then m(h) is a periodic orbit and if h =0

then T(h) is a homoclinic orbit with the origin as the critical point.

L

-] Let V: (0,90] x R2 = R be continuous, ® € (0,90], and write Va(x)

L)

. = V(&x). Assume that for fixed &, Vg satisfies Assumptions ], 2 and

& .

s, 4-8 where ¢ cquals the angle in degrees between L, and L, Again

'

! fixing &, define og(s), Bg(s) and Yo(s) as before for the potential
function Vg

4

o

B2

; Proposition 3.22: Given Vg as above, Yg(s) is a continuous function

[

- on (0,90] x (0,1]. In addition, for fixed @&, Yg is continuous on [0,1].

x

N

;' Proof: The fact that Yg is continuous on [0,1] follows from the

)

- construction of Ys and the definition of ¥g(0).
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For fixed &, one has the partial parametrization of ET(0) and
EB(0) corresponding to V¢ Denote these by ug and ve Since V
is continuous on (0,90 x R?, one can choose up and vy to be
continuous on (0,90] x (0,1]. Showing that ¥ is continuous on (0,90] x
(0,11 is equivalent to showing that « and B are continuous on this
region. Because « and B are similar, it is enough to show that a« is

continuous.

1 <Py(ug(s) - Mug(s)))(1,0)>
1Py (ug(s) - 2ugs )l

ag (s) = cos”
Hence, it is sufficient to show that ug(s) - Mug(s)) is continuous on
(0,90} x (0,11 Because u is continuous, given € > 0, there exists
8 > 0, such that if ||(°,s) - (Oo,s)" < 6 then ||u°(s) - u°°(S)" < €. Now
by the standard theorems on the continuity of initial conditions for

solutions of ODE's one has that ug(s) - Mug(s)) is continuous. ]

Theorem 3.23: Let V be as above. Let s*(®) be the unigque solution to

Y(®s) = M. Then limg.goo S*(®) = 0.

Proof: What neceds to be shown is that, given € > 0 there exists
& >0 such that if [& — 90] < & then |[s*(®) < e. Let s) = ¢€/2,
then ¥(90s') = n — & where 8, > 0. By Proposition 322, ¥ s
continuous at (90,s'), hence there exists €, < €/2  such that, if
||(0,s) - (90,s')" < €, then ¥(&s) < m.  But Proposition 3.10 states that

¥%,0) > n hence s*k) <s' + € <€ if |®-90 <8 O
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It was shown ecarlier (Theorem 3.5) that if the angle ¢ between the
projection of the two homoclinic orbits n(0), i = 1,2, onto x-space is less
than 90°, then there exists a unique periodic orbit n3(0). Theorem 3.23

says that as this angle goes to 90°, the periodic orbit Ng(0) collapses

onto the two homoclinic orbits, nl(O) and l'l,(O).
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vy 4. Crossing Orbits

Let V be a potential furction as in the previous chapters satisfying
;:o' Assumptions 1 - 8. Furthermore, for the sake of simplicity assume that the
!% positive x,-axis is a gradient line of V. Let P (h)n(h)) = m(h) for
Rb i=123 Let J), h € [h-h*] be the compact region in R? with
:’,u:i. boundaries given by EO(h), ET(h), L, for i= 12, and ny(h). (See Figure
E::::: 10). Let J(h) = P;X(h)J(h). Given z ¢ R* define 6(z) = z-R and

A 8,(z) = P(6(2)), i = 1,2.

I, :‘3 Definition 4.1: Let H(z) = h. Assume that there exists t, and t;, such
L

B that t, < t,, P,(z-t;) € m(h), P.(z-t)) € nj(h), and z-[tyt,] € J(h). Then one
Y denotes z by zij(h) and zij(h) is called a crossing orbit from n(h) to

nj(h).
|‘,| INSERT FIGURE 10.
In use zij(h) will be taken to mean both an orbit with the above

property and a generic point on such an orbit. Notice that 91(zi,-(h))

intersects n(h) and nj(h) transversally. In particular, the orbit

originates outside of J(h), enters J(h) via n(h), and exits J(h) via

:8 nj(h).

EEs

Theorem 4.2: There exists z;(0) for ij = 1,23, (except i=j = 3). (

L

>
O

Furthermore, there exists V(0) ¢ EB(0) and U(0) ¢ ET(0) so that
AN V(0) = z,,(0) and [(0) = z,,(0).

e TR AR
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Proof: _Let U = u(0,§). Then for § sufficiently close to 0, the orbit
of U lies in an e-tube about 7, over the interval [0,t*]. (See

Definitions 2.17 and 2.18.) Hence there exists t, > 0 such that

1
P (T-t)) € my(0). (See Figure 11(a).) Since the system is reversible, letting

t, = -

0 y» one  has Pl(ﬁ~to) € n,(0). Clearly, Pl(ﬁ-[to,tll) c w(0).

Therefore, T = z,,(0).

The proof that therc cxists V(0) = z,,(0) is similar.

To find zy, where j = 1,2, notice that because the positive xl-axis
is a gradient line there exists z € J(0), such that P.(z) = (x,,0), where
x, >0 and =z is on the stable manifold of the origin. By Definition 2.5
one has that lti_rp.z-t = (0,8) where ! = ({,,0,-{,,0) and hence one can
define 7,(z) as usual. Now choose Z close to z, so that the orbit of Z
lies in an e-tube about 7¥_(z) on the interval {0,t*], but so that Z is not
on the stable manifold. Then Z = Zgy Similarly, choosing Z close to z,
again, not on the stable manifold, but lying in an e-tube about 7, gives
zy,- (Sce Figure 11(b)). The reversibility of the system implies the existence
of z,, and z,,

Recall Assumption 8. Let the slope of L, = m, where i=12 By
Assumption 3, -1/m; < m, So choose 2z on the stable manifold of the
origin so that P (z) = (x,,mx,) where m > m;, and -1/m < m, (See
Figure 11(c)). As before, construct the ¥ 4+ curve corresponding to z. Then
there exists Z close to z, so that the orbit of Z lies in a [0,3] e-tube
about 7. Since z € J(0), Z can be chosen such that Z € J(0). Now one

readily checks that there exists tyt, > 0 such that P,(Z-t)) € m,(0), P)(Z-1)

€ n,(0) and Z-[ty,t,] CJ(0). Thus Z = z,,(0). Again, the reversibility of
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L

::5 the system implies the existence of z,,. 0

’U

" INSERT FIGURE 11.

AQ -
©y

i

::: Theorem 4.3: Let h € [h-,h'] Then there exists z;(h)  where
- iL,j = 1,23 (except i=j=3) If h €[h7,0) then z4(h) exists.
:.‘f

h Furthermore, one can choose V(h) C EB(h) and 1u(h) € ET(h) so that
i

" V(h) = z),(h) and TUlh) = z,,(h).

A

; Proof: If h < 0 then choose z so that H(z) = h, P(z) = (x,,0) and
¥

:,:' X, > 0 and Pz(z) = (yl,O) where y, < 0. Then z = z”(h).

o Theorem 4.2 gives the existence of zij(O). Having chosen a
0

)

particular zij(O), notice that G(zij(O)) is bounded away from the origin
&

:"l: and that 8,(z,(0)) intersects m(0) and m(0) transversally. Thus for ]
[}

‘{: jh7 end |h*| sufficiently small, one can invoke the continuity of the
’.’ flow to insure that there exists z;(h).

4

J' .

X The existence of V(h) = z,(h) and u(h) = z,(h) also follows
£5

‘ from continuity. : 8]

ieh

3

%

’

.:\ Theorem 4.4: For X, > 0, but sufficiently small it is possible to choose
. 7--.3(0)o for i,j = 123 (except i = j = 3) such that (%,,0) € Ol(zij(O)).

s

Y

Ko Proof: Recall the proof of Theorem 4.2. In each case, z; was shown to
% exist by choosing 83 Z whose orbit ilay inside an appropriate Vs
N

% e-tube. But each such e-tube contains orbits which lic arbitrarily close to
y

3!
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the origin and hence the positive x,-axis intersected with each e-tube
gives an open interval of the form (0,a). Choosing the minimum of
these five a’s gives an interval (0,a) such that if X, € (0,a) then

there exists z; such that (X,,0) e el(zij)' 0

R R T

Corollary 4.5: For h € [h",h*], one can choose z;(h), where ij = 1,2,3
(except for i = j = 3), such that there exists X,(h) > 0 with (X,(h),0) €

‘ el(zij(h)). If h e [h",0) then the same is true for i= j= 3,

From now on it is assumed that zij(h) is chosen in this manner.

In what follows the techniques of Rod [7] are used extensively. It is
assumed that the reader is familiar with [7) or has a copy readily
S available. A slight modification of his work is necessary since m(0),
| i = 1,2 are homoclinic orbits rather than periodic orbits. Thus we are
forced to regenerate his definitions and lemmas in this different setting.

We shall use the notation of [7) and refer to the proofs therein whenever

. W m -

possible.
The orbits B(zij(h)) will be used to divide J(h) into three regions,
which in turn can be used to classify the solutions of (2.12) which

intersect  J(h).

X Notation 4.6: For h € [h-,h*), let

D,(h) = (x = (x,,X,) | x € ©,(¥(h)) and x, € 0} C J(h).

! Dy(h) = (x = (x,,X,) | x € ©,({i(h)) and x, € 0) C J(h).

) Dy(h) = (x = (x,,X,) | X € 8;(244(h)) and x, € X,(h)). |

K > \*-',-\-w.,-\-\.*.s».x.
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Strictly speaking l—)s(h) cannot be defined as above if h 3 0. So in

this case let

Dy(h) = ((x,,0) | 0 € x, € X (h)).

L(h) =D(h)UD(h) for i#jek#i
L(h) = P;}(h)XT(h)) i=123

el Dy(h) = P;}(h)(D,(h)).

;f'ﬂ Let h €0, then
e L3 = (x = (x,,x,) [ if x, 30 then x € @,(u(h,1)) and

e if x, €0 then x € 6,(v(h,1))).

(;J: Referring to Figure 12, let Ei‘(h), i = 1,2, be the curves shown. In

X particular, E:(h) connects ET(h) with EO(h) and E;(h) connects

N EB(h) with EO(h). Let
o L} (h) = P;(h)(TF(h)).

Y -Ri(h) is the compact region in J(h) bounded by Ei(h) and Ei‘(h) for |

dh i =123 (See Figure 12)

Bee Ry(h) = P (n)(R(h)).

ey INSERT FIGURE 12.
[

«::‘,4’ Theorem 3.19 guarantees that Ry(h) is an isolating neighborhood for

RN
(23 Ny(h), h € [h-,h*).

iy
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Assumption 9: There exists Ei‘(h) Jor i = 12, 50 that if h < 0 then
R(h) is an isolating block for n(h). If h =0 then R(0) is as in Figure
13, in which case. it is assumed that the only bounded orbits in Ri(O) are
N(0) and the fixed point at the origin. Furthermore, any orbit which is tangent
to l:i(O) or Ei‘(O) lies either on the stable manifold, or on the unstable
manifold of the origin, or leaves Ri(O) in for.ward and backward time without

entering the interior of R,(0).
INSERT FIGURE 13.

The importance of this assumption is that R;(h) and R,(h) are
isolating blocks for m(h) and mn,(h). For conditions on V which induce
the existence of such isolating neighborhoods the reader is referred to

. Churchill, Pecelli, and Rod [1].

Lemma 4.7 (Rod {7, Lemma 3.1]). Let i=1,23,h €0.
(a) D(h) is a closed topological two-disk.

(b) Each T, and each LI} is a topological two sphere.

Definition 4.8: For i= 1,23, h €0 let

bt(h) = (z € L(h)| there exists € > 0 with z-[0,€] C int R;(h)}

bi(h) = {(z € L(h)| there exists € >0 with z-[—¢0] Cint R(h))

T(h) = £(h)/{b]"(h) U bj(h)).




?ttd. Lemma 49: For h €0,i= 1,23,

Vo (a) the bit are disjoint open hemispheres in S, transverse to the flow
e with b; = {(x,=y) | (x,y) € bi*'}.

i,‘,' (b) The tangency set, T, is homeomorphic to a circle.

}5{3 (c) The orbits through points of T, “bounce off the region R, to

the outside™ (Except when h =0 and i=1.2).

R Proof: For h <0 or i=3 see¢ [7, Lemma 3.3]. So coamsider i = I,
h =0 By Lemma 4.7, D, and Dy can be represented as in Figure 14
naly where Pl(aDi) = (X,,0) and concentric circles project to single points in R?
oy under P,,. Notice the orientation chosen for the y values. The dark

lines represent the tangencies to D, and D, and thus T,(0) is

homeomorphic to S
The proof for T,(0) is similar except one considers D, and D, 0 | q
INSERT FIGURE 4.
Definition 4.10: For i=123,h €0,and z €b}(h) set
o o;”(h,z) = inf{t > 0|z-t € b; (h)};

for z € b(h) set

— o;(h,z) = sup{t < 0]z -t € b(h))

I

"o
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provided that the inf and sup exist. Define cpi*(h): bi*(h) S bi*(h) by
¢¥(h)(z) = z-0¥(h,z) where the domain of ¢f(h) is the same as that for

oX(h).

Lemma 4.11: (Rod (7, Lemma 3.4]) For h € [h°,0], i = 1,2,3, o}t(h) is
continuous where defined with the domain being an open subset of bi*(h).
cpi*(h) is a homeomorphism from domain to range with inverse «p?(h).

Definition 4.12: For h €[h",0], i = 1,2,3, define

THh)=(z€b |2-(0,)NE £¢ and z-(0,) NE; = ¢}

Ti(h) =(z€b] | z-(—=0) NI #¢ and z-(—=0)NE =¢)

Notice that Ti*(h) consists of those points whose orbits pass from L,

through R, and leave via L¥ in & time.

£ o uE o oo

Definition 4.13; Let NTi*(h), i =123, h €[h,0], be the domain in bi*(h)

of the mapping cpi*(h).

Definition 4.14: For i = 1,23, h € [h",0], let

af(h) = (z € b}(h) [ z-[0,) C Ry}

L a0 o o0 o ae

a;(h) = (z € bj(h) | z-(—=0) CR,).

i In addition for i = 1,2, the origin is included in aX(0).
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54

A It should be clear that

7:::.

24

H )
" Lemma 4.15: For i = 1,23, h € [h°0), Tf(h), NTXh) and aX(h) are
._'i\\. -
i disjoint. This is also true for i=3 and h=0. If i=12and h =0, then
K/

3.

! this holds except that a}(0) Naj(0) is the origin.

3

I

::" It should also be clear that any orbit in J(h) which passes through
O

‘E Ti*(h) must leave J(h) in forward or backward time. Should an orbit
‘o belong to ai*(h), then that orbit must be bounded in positive or negative time.
£y

i

:c*' Finally, any orbit which belongs to NTi*(h) cannot leave J(h) through
N

::’,n‘ R,(h) immediately. Thus analyzing how orbits pass through J(h) can be

reduced to examining the orders in which the orbits can intersect Ti*(h),

& NTZ(h), and a¥(h).

. Lemma 4.16: (Rod, [7, Lemma 3.5 and following comments]). For i = 1,2,3,
1 and h € [h",0];
he (a) The Ti*(h) are homeomorphic open disks in Zj.
(b) The NTi*(h) are homeomorphic open sets in tj.

R0 (c) The af(h) are homeomorphic subsets in L,

.. Lemma 4.17: (Rod, [7, Lemma 3.6)). For i = 1,23 and h € [h",0) or
e i=3 and h=0:

0 (a) The boundary of Ti‘* , oT ;" , is a continuum which separates T,

(b) NT} is an open annulus with boundary T, U 7y, where 7, is a

! continuum which separates NT} from T} in b}

2% VI Y y. 0% () R TR
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; (c) ai'*(h) = 7,(h) U ar;“(h) is a continuum which separates L, into two

components.

Assumption 10: For h € [h.,0) and i = 12,3, a¥ is the intersection of a

; sequence of closed annuli AX(i) C b¥, each containing a¥ in its interior, with

A:_ (i) cint(AX(i) for m=123,..

behavior of orbits passing through J(h) for h < 0. Again, for conditions

|
|
!
Assumption 10 will be used in the following chapter to describe the l
|
on VY which induce the existence of such annuli, the reader is referred to ‘
1
%
!

‘ [1]. To see that these conditions actually imply Assumption 10, see [3].

#

!

¥
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w 5. Bounded Orbits

In this section the potential function V satisfies Assumptions 1-10
I ;ﬁ and the positive x;-axis is taken to be a gradient linc. The results are
L] presented as a classification of the solutions to (2.12) which intersect
. J(h) for h € [h-,h*]. This classification takes the form of a description
::5 of the order in which the orbits pass through Ry(h) for i = 1,23. As
3-,,?-. will be seen the classification changes dramatically depending on whether
| h >0 h=0 or h < 0. The value of this example, however, comes
) from viewing h as a bifurcation parameter. In particular, h =0 is a
':,i.' bifurcation point where the set of bounded orbits changes from a single

periodic orbit to a "pathology" of bounded orbits.
YO 5.1. h € (0,ht]

2528 Since h is assumed fixed and greater than zero, it will be dropped

WY from the notation.

j,.:' Theorem S5.1: For h € (O,h*] the only bounded orbit in J is n,

Proof: This theorem is actually a corollary of Theorem 3.19 for the case
i :-’ h > 0. Recall that in the proof an isolating neighborhood PN,, is
Iy constructed. In this case we can choose s, = 0 and s, = 1. Hence

1 2
o !
J = PNy, O

)
Y

Un 2000 ML)
?3*“#f§ﬂf¢éf,

O e T o T Ta A o L g S A (e
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For this case we return to the ideas of Rod [7], however, it will

become more evident where the differences lie between the description of
the bounded orbits in his example and ours. The first step is to describe
the behavior of the solutions to (2.12) as they cross the disks D, D,

and D, Notice that 8D, = aD, = dD,.

Definition 52: For i = 1,2, let e(l) and ¢(2) be the first point and
last point, respectively, at which e(zij) intersects Dy Let eyl) =
(x,,0,-¥,,0) where X; is as in Theorem 44 and ¥, > 0. Finally, let

e4(2) = (%,,0,5,,0).

Using Corollary 4.5 and keeping in mind the conventions used in the
proof of Lemma 4.9, one can represent D, i = 1,2,3 as is done in Figure 15.

Furthermore, G(z“) divides Dl into a closed right half disk, RD,,
and a closed left half disk LD,. Similarly 6(z,,) divides D, into
RD, and LDz. Finally, D3 is divided into a closed upper half disk,
UD,, and a closed lower half disk, LD, by the orbits on the stable and
unstable manifold of the origin which project onto the positive xl-axis. in
addition, notice that except for e(zu), RD, consists of the orbits which

leave R, and immediately enter R, and LD, consists of the orbits

b 3

which leave R, and immediately enter R, Similar statements can be

made for LD, RD,, LDy and UD,
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ot INSERT FIGURE 15.

We are interested in describing how ai*, Ti* and NTi* intersect
e Dj for i,j = 1,2,3. For our purposes it is sufficient to show that the
:::"t: geometric information present in Figure 16 is correct. To do so we shall
restrict our attention to RD, and UD; and claim that the arguments
fég": for the other half disks are similar. Our strategy is to determine the
"nels sets ORD, N T¥ and 3UDy N T¥ and then use results from Section 4
| to obtain Figure 16. To do this the following notation will be useful. If
a,b € 8RD, (8UD;) then (a,b) denotes the open segment of dRD,
(8UDy,) obtained by starting at a and proceeding to b along 8RD,
(8UDy) in a clockwise direction. [a,b] denotes the corresponding closed

i:t segment.
INSERT FIGURE 16.

Qo
‘3
Yy We begin with two technical lemmas which, are relavent since

D*V(0) = I

Uy Lemma 53: Let z = (x,,0,0,x)) where x, > 0. Let Z = (x0,y,Y,)
" where y, < 0, y, > 0 and H(Z) = 0 (H, is defined as in (22)).

l. )

::%: Consider ©(z) and ©(Z) solutions to the linear equations (2.3). Then
4

,:E 8,(z) N 8,(Z) = (x4,0).

Py
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Proof: The exact solution to (2.3) is given by z(t) = exp(tA)z(0). More
explicitly, we have
et) o v(t) o

o et) o ¥(t)
¥(t) o o(t) o]

o ¥ o e(t)

exp(tA) =

where

a(t) = cos(it) = ;—(c' + et
and

) |
¥(t) = —i sin(it) = 3 (et —eY).
Thus a solution to el(z) N el(z) must be a solution to

8(t)x, = (1o)X, + 1)y, (5.1)

and
¥(t)x, = ¥(ty)y,. (5.2)

Since H 2(Z) =0 and Y, < 0 one has that

v, = -vxi+yl . (5.3)

Substituting (5.2) and (5.3) into (5.1) gives

(8(t) = &(t))xq = ¥txy v(1+¥3(1)/¥(t)

or

o%(1) ~ @%(ty) = ¥A(ty) + ¥H(1).

Expanding gives

ol
GV FLIC VX ORI o ) L) ) [} U PO
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t+t 4ty -tet
2-(¢ %+¢ %+4¢ %4ec 9Y=0

The only solution to thisis t=t, = 0. o
Lemma 54: Let z = (x3,0,7x,0), Xy > 0 and Z = (x,,0,y,,y,) where
y, <0, y, >0 and H(Z) = 0. Consider 6(z) and ©Z) solutions to

the linear equation (2.3). There 8,(z) N 0,(Z) = (x,,0).
Proof: The proof is similar to that of Proposition 5.3. ]
Proposition 5.5: [If "(‘il,O) | is small enough then z € (e4(1), 25,) C T7.

Proof: Choosing ||(i1,0)|| small means that one can approximate the
orbits 6,(z) of the nonlinear flow (2.18) by the orbit of 8,(z) of the -
linear flow (2.2). By Lemmas 5.3 and 54, 91(2) (linear) is bounded by
the positive x;-axis and 8,(z,,), both of which intersect I}(0). Thus

8,(z) (nonlinear) crosses I}(0), i, z € TF(0). 0

Since the x;-axis is a gradient line of V, ¢4(2) € T;'. Refering to
the proof of Theorem 4.2 one can conclude that ([z,,z,] C T§. By
definition e, (1) leaves J via I thus e 1) € T¢ U T} Similarly
¢,(2) € T{ U T§. Therefore, T} 0 (z,,e,(1) % ¢, Ty n (e,(1)zyy) # &
and 3T} n (z,5,¢,(2)) % ¢.

Using the reversibility of Hamiltonian systems we can also conclude

that (e4(1),24,] C Tg [24),64(3) C Ty, (eq(2)e,(1)] C T}, 8T; N (e,(3)2,,) # ¢ -

S

YO YOO
y s » .‘hé.‘p‘ .’th .“.‘!‘i‘h -
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and 8T N (z4,,¢,(2)) # ¢. Finally, by definition, for i = 1,2, ¢,1) € af
and e4(2) € a;.

With these general results established we can now turn to the specific
examples. We begin with RD,. Clearly [e,(1).e,(1)] C Ti'" since it is
defined by ©(z,,). Combining this with proposition 5.5 gives that
fe,)z,] € T{. Lemma 4.16 says that T} n RD, is an open set in
RD,, hence there must be a component of this open set which contains
[e,(1),z,,]. Similarly, there is a component of T;‘ N RD, which contains
[z,4.2,s] The boundaries of these two components are subsets of a‘l*
and a}, respectively. But a} naj = ¢ Thus we can represent
Tf N RD, and al nRD,, i = 1,3, as is done in Figure 16.

Determining how T; intersects RD, is slightly more difficult
since a] and a; both represent how the unstable manifold at the
origin intersects RD, and hence, we do not have that a] N a; = ¢
Never the less, from the previous general results we can conclude that
c4(2) € a'r; n aT;. Since [e,(1)e,(2)] C T; and T; is open in RD,,
we have that a;, i = 1,2, is bounded away from [e,(1)e,(3)] Away
from 6(z,,), RD, is transverse to the flow and thus 8T; n 8T; (which
represents a portion of the stable manifold to the origin) cannot branch
apart. Thus a; = a; and separates T; and T3 in RD,. Thus, again
we have the result of Figure 16.

Now consider UDg; Let ¢ denote a linc segment connecting O
and 2z, in UD, Recalling the proof of the existence of 1z,

(Theorem 4.2) onme recognizes that if z € ¢\{(O}) then z € T} n T;

[0,z,,] V ¢ bounds a region in UD,; and Proposition 5.5 can be used to
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!: show that any clement interior to this region is an eclement of TY.

,‘9 [e4(2),0) is defined by the x,-axis and hence is contained in TJ thus

by previous remarks [e,(1),0) N Tf = ¢ Therefore, we can conclude

3;3%{ that for i = 1,3, Tt and a} are as in Figure 16. A similar

"ff::; argument can be used for T, and a;, i = 2,3.

;o We are now in a position to consider the classification scheme and

::Ef:‘ prove the existence, or lack thercof, of certain orbits. Our classification

‘:'.: ) will be done by describing the sequence in which the orbits pass through
the interiors of the R/, i = 1,2,3. Let s be a sequence {s,} (possibly

vy

‘:"E bi-infinite) where s, # 5., and s, € (-=1,23,%). As will be shown to

St

”tn, classify the orbits of (2.18) which intersect J(h), h € [h",0), one needs

the following 9 types of sequences:
(T1) s is a bi-infinitc sequence (s,);_—w and s, € {1,2,3).

(T2) s=(s);— and s, € {1,23).

- (T3) s={s5)). = and s, e (1,2,3).
3! ®
:Q' . (T4) s =(s.),o and s,=-=5, € (1,23) for k 3 I
W
;;;; : (T5) s=(s)) = and s,=-= s ¢€(1,23) for k € -l
. (T6) s = {s,);_, and s, € (1,2,3).
L
Y
;:;':‘, (T7) s=(s)0_, and s,=—=5, € {1,23) for 1€k ¢n
i"
~:i‘,‘: (T8) s={s)po and s =58 ¢€(1,23) for 1 ¢k <n.
- (T9) s =({s)y_o @and s, == s = and s € (1,23) for
55‘,;’: 0 <k <n.
'1.‘!}9
“i‘l
g
S To sece how these sequences describe orbits, notice that given s = (s,)
R
;::::: one can associate a sequence R(s) = (R(s)), where R(s)) = R'x if
o
:'l.,:
N
o
e
i
}:’ca:ns : A v AR
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s, € {1,2,3). One says that an orbit follows s, if as time increases the orbit
passes into the interior of each R.k successively. If S = —= as in
(T4), (TS) and (T9), then one says that the orbit entered R(sl) via I

b
Similarly, if s_ = « as in (T5), (T8) and (T9), then one says that the orbit

left R(s,,) via E.‘.l
n-

Though all sequences of the form (T1) - (T9) are necessary in the case
h <0, for h =0 the results are much simpler. This is what one expects
since h = 0 is the bifurcation point. As Theorem 5.6 demonstrates, the
only sequences which appear fall into the types (T6) - (T9) and
furthermore, most sequences s in (T6) - (T9) are not realized. However,
comparing the results of Theorem 5.6 with those of Theorem 5.8 allows one
to see how the appearance of the critical point at the origin "separates”
orbits entering and exiting J via I U L, This separation is the

bifurcation which gives rise to the pathology of orbits in J.

Theorem 5.6: $ is a sequence representing an orbit on the energy level
H =0 ifand only if s = (s} satisfies:

(1) There exists at most one k such that s, = 3.

(2) If (s;8484) = {1,2,1} or (2,1,2} then s,=-* and Sy = =

() If {spSpSe) = (1,2,3) or (2,1,3) then

So

(4) If (s;89.84) = {3,2,1}) or (3,1,2) then s, ==

(5) (1,2) and (2,1} are not possible sequences.

Proof: We first show that if s represents an orbit then s satisfies (1)

through (5). Let 08(z) be an orbit represented by s.

OO W P\ .Q.f._‘ .,|."§"‘ Q‘C
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(1) We need to show that if sy, =3 and k # ¢ then s #3. Without
loss of gencrality we can assume s, = 3 and we need only show that
s, #3 forall k>0 If s, =% or s, does not exist then we are done.
Thus s, =1 or s, =2 In cither case the argument that follows is similar
so let s, = 2. This implies there exists t, such that z-t, € LD,. By Figure
16 one can conclude that z-t, € T{, z.t, € T; or z-t; €a} = aj. In the
first case, by the definition of T'l", s;=1 and s; == In the second case
s, = = and finally if z-ty€a} =a} then s, does not exist.

(2) The assumption that (1,2,1) = (s,,54:Sy} implies that there exists t
< t, such that z.t, € LD,, z-1 € UDa and z-(to,tl) C Rz- Refering to
Figure 16 we have that z-t, € T; implies z-t, € Ty and z-t, € TS
implies z-t) € T; thus s = (-=1,2,1,%).

(3) Assume (s,,5,.5¢) = (1,2,3), then there exists t, < t, such that

1
z-t, € LD, z-t;, € RD, and z-(t,t,) C R, Since s4 = 3, z:t, € T; 4
hence z-t, € T] and therefore s, = -= If (s5,,5,5,) = {2,1,3) the
argument is similar.

(4) The argument is similar to that of (3).

(5) s = (1,2) means that aj intersects a} non trivially in
LD,\{O). Figure 16 says this cannot happen.

Showing that, if s satisfies 1-5 then there exists an orbit whose path is

represented by s, is easy but tedious. (1) - (4) implies that the length of

s is less than or equal to 7. Thus there exists a finite number of

possible orbit types. Checking that each orbit in fact exists is therefore

possible and left to the reader. As an example we shall demonstrate the

existence of ©(z) given a particular s.
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Let s = (-=1,23,1,2,2) = (5)¢_ We need to find z such that
8(z) is represented by s. Let K, be a closed set with non-empty
interior such that K, € LD,\(T} U TF v a}) and Ky N al #¢6 We
can choose K, small enough so that <p;'(l(o) C RD,. Thus if z'e€ K,
and s' represents 6(z') then s' = {-=]1,23,.) There exist subsets of

K, which in forward time pass near My(0) and exit from Ry into R,

0
(See Rod [7] for details). Thus ¢ # K, = ¢f 0 ¢}(Ky) n D,
Furthermore, K, N T} # ¢. Thus if z € K, and s represents z)

then s = {-=,1,2,3,1,2,}. o

Corollary 5.7: (a) If s = (3,1}, (1,3), (2,3} or (3,2} then there exists
at least one orbit ©(z) which is represented by s.

(b) There exists at least countably many orbits of the type s = {1,3,1},
{2,3,2), {1,3,2) or {2,3,1}.

(c) There exists at least uncountably many orbits of the type s if s

is not of type (a) or (b).
Proof: See Rod [7] for details. 0O
53. h € [h,0).
In this region we have three periodic orbits whose stable and

unstable manifolds intersect transversely., For this case the work has

been done for  us by Churchill and Rod, [2] and [3] Theorem 5.8

implies that the set of bounded solutions is much more complicated when
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RO, h < 0 than when h = 0, since any sequence of type (T1) - (T9)

Cytye) corresponds to an orbit passing through J.

bty Theorem 5.8: (a) Let s be of type (T1). Then there exists uncountably
el many solutions of (2.18) which pass through the sequence of regions R(s).
s (b) Let s be of type (T2) - (T5) or (T7) - (T9). Then there exist
uncountably many solutions passing through the sequence R(s).

:fnfé{ (c) Let s be of type (T6) with n » 3. Then there exist at least

countably many solutions passing through R(s).

1y Proof: This theorem follows from a collection of theorems in [2] and [3].
N More specifically, (a) follows from Theorem l..3 in [3] and (b) and (c) follow

from Theorem 6.4 in [2]. a

Theorem 5.9: Assume s is of type (T1) and periodic with period n, i.e.
2 Sy = Sy, Jor all k where n > 0. Then given any m > 0, there
“

:q& exists at least one periodic orbit which passes through the sequence
k°+n

R, (sk}g=k°

Tk m-times and then closes up.

[ (‘.u'i

Proof: See [3], Theorem 1.3, 8]
§

Both Theorem 58 and Theorem 59 are dependent on Theorem 1.3 of

RO Churchill and Rod [3). In their paper they give 6 hypotheses that must

OO 30 Ve ) ( RN RN R OO SR OO IION0
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be satisfied in order for the theorem to hold. It is straightforward to
check that the first two are satisfied. The third hypothesis follows by
arguments similar to those of [3], Section 3. The fourth hypothesis is
Assumption 10 in Chapter 4 of this paper. The fifth hypothesis is also
satisfied by the results of Chapter 4. Hence only the sixth hypothesis
needs to be demonstrated. This is the content of the following

proposition.

Proposition 5.12: Let U C T; be the maximal connected open (relative to
L) set containing z,; € T which is carried homeomorphically by the flow
onto U* C 'I';*. Also, let K C a; be any connected set intersecting the
closure of U  which is carried homeomorphically by the flow onto
CT} ¢ aj+. Then:
(a) The closure of U s carried homeomorphically by the flow onto the
closure of U®*. .

(b) The closure of K is carried homeomorphically by the flow onto the

closure of K*.

Proof: Let ¢: U ~ U* denote the homeomorphism. If p € U then
¢p) = q € U* and there exist t(p) » 0 so that p-t(p) = q. Let §
be in the closure of U* and let q, = § where q, ¢ U* for all n.
Then there exists P, € U and t(pn) > 0 such that pn-t(pn) = q,. The
closure of U is compact, hence there exists a convergent subsequence
{py} such that p_ - P an element of the closure of U. If it can

be shown that there exists a t(p) such that P-y(P) = §, then (a) will
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er be shown to be true. It is sufficient to show that (t(p,)} is bounded.
So consider the case i = I, j = 2. Define M(z) = (m,m,mg) by
” letting m; equal the number of times 6,(z) crosses D; for i = 1,2
é}: and m, cqual the number of times 8,(z) crosses the positive x,-axis.
A' Since for z € U, 6,(z) always crosses cach arc transversally,
. MU-=-2Zx2Zx2Z is  continuous. But M(z,,) = (0,0,1) thus
& M(z) = (0,0,1) for all z ¢ U. If (t(p)) is unbounded then cither:
;ﬁ,'! (a) there exists p, € U such that M(p,) = (m,m,my) where either
mg>1 or m >0 for i=12 or
ey (b) ©(p,) remains arbitrarily long in R,
._rf?:: Case (a) cannot happen since M is continuous and case (b) cannot
A happen since this would force mg, to be arbitrarily large.
The proof for the other zij’s follows in a similar manner. The proof

'Y of (b) is also similar. 0
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